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Abstract. The behavior of spatially inhomogeneous populations in networks of habitats provides exam-
ples of dynamical systems on random graphs with structure. A particular example is a butterfly species
inhabiting the Aland archipelago. A metapopulation description of the patch occupancies is here mapped
to a quenched graph, using the empirical ecology-based incidence function description as a starting point.
Such graphs are shown to have interesting features that both reflect the probably “self-organized” nature
of a metapopulation that can survive and the geographical details of the landscape. Simulations of the
Susceptible-Infected-Susceptible model, to mimick the time-dependent population dynamics relate to the
graph features: lack of a typical scale, large connectivity per vertex, and the existence of independent
subgraphs. Finally, ideas related to the application and extension of scale-free graphs to metapopulations

are discussed.

PACS. 87.23.Cc Population-dynamics and ecological pattern formation — 89.75.Hc Networks
and genealogical trees — 89.75.Fb Structures and organization in complex systems

1 Introduction

Population dynamics or ecology offer numerous appli-
cations for stochastic processes like directed percolation
and other related models studied by statistical mechan-
ics. Their characteristics are determined by the structure
of the underlying habitat or landscape. A very common
class are ensembles of habitat patches, where each sin-
gle patch is too small to carry a stable population but
the population can survive by constantly colonizing empty
patches [1]. In the biological literature such systems are
called metapopulations [2,3]. Metapopulations appear in
many different organisms, e.g., the Spotted Owl in South-
ern California [4] or the European nuthatch [5], the land
snail Arianta arbustorum in northern Switzerland [6], wa-
ter voles in Scotland [7] or the American pika [8], even
spatial aspects of HIV in lymphoid tissue can be cap-
tured by a metapopulation model [9]. The perhaps best
studied cases are insects, such as the Granville fritillary
butterfly Melitaea cinzia on the archipelago of Aland in
the Baltic Sea between Sweden and Finland (60° north-
ern latitude, 20° eastern longitude) [10]. Its larvae feed
on host plants, Plantago lanceolata (Plantaginaceae) and
Veronica spicata (Scrophulariaceae) growing on well dis-
tinct meadows which form the butterfly’s habitat patches.
In the plants’ centre the larvae form small nests around
which they spin a white web, which is the easiest to rec-
ognize indicator that a habitat patch is occupied.
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In modeling population dynamics certain features are
isolated or highlighted and then compared with field ob-
servations. Thus one hopes to find and understand the
key mechanisms behind the observed phenomena. Models
exist on different levels of abstraction. The state of a pop-
ulation could, e.g., be rendered by an exact list of locations
of each individual, or by a mere number of the total pop-
ulation size. In the case of the butterfly metapopulation
considered here it makes sense to consider each patch of
habitat as either populated or empty, thus introducing a
state variable p; = 1 or 0 for each patch i. Insects lay their
eggs on host plants which are so dense in each patch that
after a short while the entire patch will be colonized, typi-
cally after a few weeks. In the same way, extinction events
hit the patch as a whole. On the other hand patches are
sufficiently isolated by their mutual distance which is sub-
stantially larger than their respective sizes, so colonization
of one patch does not immediately imply a new population
on a neighbouring patch. This process is much slower and
it may take years before an empty patch gets colonized.
This discrete state space (p; = 1/0) is different from the
original approach of Levins [1] where population dynam-
ics is rendered by a system of coupled ordinary differential
equations (ODEs) for the population sizes in each patch.

Migration couples the population in different patches,
and the coupling strength depends on their mutual dis-
tance and the geography of the landscape between the
patches. Ecologists commonly use the term incidence for
the intensity of immigrant arrival to a patch from all other
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patches [10]. In many models the contribution of one given
patch to the incidence of another one is weighted by a real
number. On a very basic and abstract level the patch con-
nection may be simplified by a network of patches with
links between each pair of patches when substantial migra-
tion is possible and without links if it is negligibly small.

In this article we present the statistical properties of
the network structure inferred from the habitat of the
Granville fritillary butterfly Melitaea cinzia. The basic
idea is to condense the original network information into
a graph, using the incidence functions of metapopulations
together with a threshold to establish fixed or quenched
links between any pair of coupled habitats. This descrip-
tion holds a number of parameters, that are in essence
empirical — either measurable or then related to the ques-
tion what is the best effective value so as to recover other
measurable properties. These graphs turn out to be inter-
esting: they provide examples that have either power-law
distributions for the “degree” or the number of neighbors
for vertices, or possess in general for relevant parameters a
large connectivity, and a rather broad distribution thereof.
Moreover the structure reflects the mapping of the patch
geography (sizes, locations) via the incidence functions to
an abstract graph. This is a direct example, perhaps the
first realistic one, of how to obtain a connection between
an interaction graph and its constituents in a real, two-
dimensional world [11-13].

Then we use the graphs so obtained (in Sect. 3) to
study simple population dynamics, i.e. the contact process
model, called susceptible-infected-susceptible (SIS) in an
epidemiological context. This can be used to derive some
general consequences for population dynamics on such
landscapes. For scalefree graphs there have been recent
developments that highlight the role of wide connectiv-
ity distributions on the survival of epidemies. In our case,
these are reproduced in that the high average degree in the
Aland-like graphs implies a very small effective threshold
for extinction. Also, removing most-connected nodes has
a relatively small effect on the average prevalence in the
remaining ones. Despite this small effective threshold the
butterfly species Melitaea cinxia is threatened by extinc-
tion on Aland, so in the model context it does have a small
spreading rate compared to its local extinction rate. We
also compare with the SIS-dynamics on Barabési-Albert
(BA) graphs [14], to have an understanding of how the
specific graph structure in the metapopulation networks
affects statistical quantities being quite well understood by
now in the BA-graphs (which have only weak structural
correlations) [15]. Finally, we finish the paper by outlining
the lessons that one learns from applying such statistical
physics ideas to empirical data and related models from
metapopulation dynamics.

2 Geography

The archipelago of Aland extends over an area of roughly
50 by 70 km. It consists of several thousands of islands,
some of which are smaller than 100m, whereas the biggest
measures about 30 km in diametre. In current field studies
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Fig. 1. The 3956 patches of habitat on the Aland archipelago,
represented by circles with areas proportional to their actual
sizes (between less than 10 m? and 10 ha) and centres at the
patch locations. Regions of low and high patch density become
apparent, the latter mostly on the main island. In the eastern
part more distant islands form isolated groups of patches.

about 4000 patches of habitat have been identified, 1500 of
which have been followed in their population status over
a longer time, i.e., for more than a decade [10,16-18].

The habitat patches are not distributed uniformly,
varying quite substantially in local density. Also their size,
and with it the size of the local butterfly populations,
varies over two orders of magnitude. Figure 1 shows the
measured data, on the basis of which we create the graphs.
One can distinguish several candidate subgraphs, based on
the geometrical distances of the patches. Notice also the
size distribution of the patches themselves.

Figure 2 shows the area distribution of the patches. It
is evident that this has a broad character, and a rough
fit to the data indicates a power law decay P ~ A~2. An
analysis of inter-patch distances reveals the high nonuni-
formity in the locations of patches. Figure 3 shows a his-
togram h(r) of distances r between each pair of patches
in bins of width 800 m. These data, as well as those for
P(A) are in practice constructed by field observations, by
using GPS-receivers to construct distance- and size-data
sets with a usual GPS accuracy level (~10 m). The mid-
points of each patch, from which the distances are com-
puted, are roughly set at the respective centers of gravity.

There is a remarkably high number of close pairs, we
find lim, o h(r) = ho > 0 which is significantly different
from the form h(r) ~ 27 v r belonging to patches dis-
tributed according to a two-dimensional Poisson process
with uniform density v. In Figure 1 one can find such re-
gions of very high patch accumulation, e.g., in the area
north of the big bay in the centre of Aland.

Different habitat patches are coupled with each other
by dispersal, immigration and finally colonization of
empty patches starting from inhabited locations. In many
theoretical approaches for the sake of simplicity disper-
sal is assumed to be uniform in the landscape and not
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Fig. 2. Number of patches as a function of patch sizes on
double logarithmic scale. The line is meant as a guide to the
eye, and indicates a 1/A%-behavior.
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Fig. 3. Histogram h(r) of pairwise patch distances r taken in
bins of width 800 m. High accumulation lets h(r — 0) approach
a finite value. Note equation (1), and the role of r therein.

to depend on special geographic features such as rocks,
vegetation profile, water, or others. A central concept in
describing the dynamics is the incidence function or inci-
dence at a patch, representing the immigration intensity
to that given patch [2,10,18]. The colonization probability
of an empty patch subject to immigration for some period
of time is an increasing function of the incidence. Patches
which are close and well connected to many others there-
fore have a higher colonization rate than more isolated
ones. The importance of inter-patch connectivity makes
it an obvious choice to try to represent the landscape of
habitat patches by a graph of linked nodes.

3 Graph formation

The main idea in mapping the metapopulation dynamics
onto a graph is to consider the possible intensity of immi-
grants to patch ¢ due to emigrants form patch j. Here it
is helpful to define a migration kernel

fij = CA?A?/ exp (—7i;/ D), (1)
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Fig. 4. Example of a network connecting the patches shown in
Figure 2, obtained with parameter set PL (see text). Immedi-
ately visible are (i) a high degree of connectivity and (ii) several
(semi)independent subgraphs corresponding to different larger
and more distant islands in the archipelago.

where C' is a constant prefactor, the A;’s are the patch
sizes, 3 and (' exponents relating the migration of a pop-
ulation to/from a patch to its size, and D takes into ac-
count the proper normalization of the dispersal length.
The migration kernel decays with increasing inter patch
distance r;; = |x; — xj].

The exponential decay accounts for the loss of but-
terflies when crossing unsuitable terrain (so called matriz
between habitat patches). Typical dispersal lengths are
between 100 m and 1 km [2,10,16,17,19]. Larger patches
supply more emigrants and in turn attract more immi-
grants, but this effect is not arbitrarily strong, so a rea-
sonable range is 0 < (3,3 < 1. This last choice is not
restricted to the models of Melitaea cinzia on Aland but
applies to any metapopulation system with varying patch
sizes.

Out of the set of patches i we form a graph so that
two patches j, k are connected with a fixed directed link
(or edge), if the condition

fjk >T (2)
is fulfilled, with T being a free parameter. In the case
B = (3 considered in the simulations presented here, all
fik = frj, and the resulting graph is symmetric.

Such a threshold is biologically reasonable, accounting
for the observation that empty patches become colonized
only if a certain amount of immigrants is present. A but-
terfly will be more likely to approach a patch if possible
mating partners are available, moreover the presence of
other individuals acts as an indicator for resource quality
in the patch to be populated [2].

Note that the kernel f;; in (1) only depends on the two
patches ¢ and j. For simplicity the effect of other patches
distracting migrants is neglected, but one could envision a
“fully nonlocal” model of inter patch migration [21]. Fig-
ure 4 shows an example of an ensuing network, for the
parameter set that produces power-law-like connectivity
distributions (see below), making it evident that such net-
works are highly connected.
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Fig. 5. Example degree distributions, i.e., the number P(k)
of nodes with k neighbours, obtained from networks with pa-
rameter sets PL (upper graph) and EXP (lower graph) respec-
tively (see text) resulting in power-law and exponential decay
of P(k).

Further information can be obtained by considering
the degree distributions P(k), i.e., the number of nodes
with k links pointing to neighbours. These are very broad
— but by tuning the parameters, in particular I = T/C
and 3, the approximate shape of P(k) can be changed.
We obtain in the case of Figure 5 two different forms one
of which resembles a power-law, with a scaling P ~ k=21,
and another one which resembles an exponential distri-
bution but with a decay parameter that implies a slow
decay. The parameters used were D =500, 8=/ =1.0
and [ =T/C =2 x 10° for the power law (PL) case and
D=1000, 3=3"=0.25 and I =T/C =3 for the exponen-
tial (EXP) distribution of connectivities. One peculiarity
of the EXP-network are the smaller P(k) for small k: Due
to the relatively large dispersal length D very few nodes
remain completely isolated. We have for the average de-
gree that (k) is about 7.7 and 44.9, for the PL and EXP
cases respectively.

By the construction of the graph via the migration
kernels f; the connectivity k; of a patch i gets correlated
with its size A; as is shown in Figure 6.

The graphs consist of isolated subgraphs for ecologically
sensible parameter ranges, which roughly correspond to
larger islands in the group (e.g. Foglé and Kumlinge in
the eastern part). This will be shown to be reflected in
the behavior of models defined on such graphs. We do not
study in detail the number and size distribution of the
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Fig. 6. A scatter plot indicating correlations between patch
sizes A; and connectivities k;, inferred by construction of the
graph.

separate components; in the cases considered below there
is typically “a few”, up to maybe ten such present.

One should also note the presence of correlations in the
structure. The underlying geographical graph construc-
tion induces correlations between degrees of neighbouring
nodes: Neighbours of highly linked nodes tend to have
many neighbours themselves, because typically they lie in
regions of high patch density. Figure 7 shows these cor-
relations for the parameter set EXP (a PL graph would
have qualitatively the same results), in its upper panel the
number P(k, k) of links connecting pairs with degrees k
and &’ normalised by the number one would expect in an
uncorrelated graph, k k' P(k, k). Generally the degrees
of neighbouring nodes tend to be similar, and this be-
haviour becomes more prominent for larger k. The lower
panel contains the average degree of neighbouring nodes
(knn) of nodes of degree k, the raw data are represented
by empty circles the solid line is obtained by convolution
with a smooth kernel. Thus the behavior of the butterfly
metapopulation resembles social networks, there is assor-
tative mixing [22]. Notice also that the scaling of Figure 7
is almost like a power-law, with an exponent close to 0.5.
This type of scaling has in mean-field-like models strong
implications on clustering [20]. Here, it turns out to be so
that in analogy with the implications of (kn,) the aver-
age probability for two nearest neighbors to be connected
with a link is substantial (~ 0.6...0.7), and the C(k)-
distribution of clustering of nodes with a degree k is broad,
and decaying with k.

4 The SIS model

The contact process or the SIS model is a simple descrip-
tion of the spreading and dynamics of epidemics. The
strong seasons in northern latitudes impose an annual life
cycle on the population of Melitaea cinzia, so all patch
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Fig. 7. Correlation in the degree of neighbouring nodes for the
parameter set EXP (a PL gives no qualitative difference). Up-
per panel: P(k, k'), number of connected pairs between nodes
of degrees k and k' normalised by its expectation in an un-
correlated graph, k k' P(k,k’). Lower panel: (kn,)(k), average
degree of neighbours of a nodes as a function of its own degree
(circles) with smoothing of the data over a window of width 15
(solid line). A rough fit indicates (knn) ~ k'/2.

occupancies are updated in parallel once per year. Never-
theless characteristic features of its dynamics can be cap-
tured by the conceptually simpler continuous time pro-
cesses.

In order to adapt the time scales recall that typical sin-
gle patch populations last for only a couple of years [2,10].
In continuous time it is therefore sensible to set a death
rate of 1 per year as a frame of reference to which all other
rates and times have to compare. As populated nodes on
the graph become empty at rate 1, empty patches become
colonized with rate A (given as a model parameter) if at
least one neighbour patch is populated. The influence of
graph structure has recently been highlighted in the con-
text of scale-free networks, for which (k?) may diverge in
the limit of large node numbers (for a broad P(k), e.g., for
power-laws ~ k=3, like the Barabdsi-Albert model). The
practical outcome is a vanishing critical spreading rate A.
in the limit of infinite network sizes, i.e., there are always
parts of the network with high enough connectivity to
sustain a population no matter how small the spreading
rate A.
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Fig. 8. Average activity p(\) vs. spreading rate A for param-
eter sets PL and EXP, compared to a Barabasi-Albert graph
of the same size.

10

—— EXP
—=— PL
—— BA

0 5 10 15 20
7\._1
Fig. 9. Same data as in Figure 8 plotted in logarithmic scale
over 1/A. Straight lines indicate (p) ~ exp(—const./\), which
is not quite obeyed by the data from the Aland network in con-
trast to the BA graph which comes closer to this behaviour [15].

We investigated the behaviour of the SIS model in the
Aland graphs by Monte Carlo simulations and compare
them to Barabdsi-Albert networks [14] with m =3 of the
same size (3956 nodes). The main features are depicted
for two kinds of sample networks in Figures 8 and 9, both
for a case of a power-law decay in P(k) (parameter set
PL) and exponential decay (parameters EXP).

The conclusion is easy: for such large connectivities
the effective threshold is small. Moreover the influence of
the actual form of the degree distribution is quite negli-
gible, the Aland graphs nevertheless differ slightly from
BA networks in the functional form of p(\). The latter
exhibit a clear behaviour p ~ exp(—const/A) in analogy
with mean-field behaviour of the SIS model on scalefree
networks [15], as is visible in Figure 9. The data from the
Aland networks seem to follow rather a functional form
exp(—const/A7) with some effective v > 1, resulting in a
bending line in Figure 9, though the PL data is close to
the MF-scaling. This may be due to the presence of highly
linked subgraphs of different sizes, each of which behaves
mean-field like, such that the bending line could be a sum
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Fig. 10. Comparison of p(k) as a function of k between a BA-
graph (N =3956, m=3) and the Aland graphs for parameter
sets PL and EXP.

of several straight lines with different slope each. Note
that there is evidence that in the presence of clustering
the survivability of an epidemic is enhanced, since, sim-
ply put, the infection process has more routes available
between any pair of empty and occupied nodes [23].
More microscopic studies of the role of the degree are
depicted in Figure 10. Here we consider (py), the average
activity of nodes with degree k. It is distinctly different
from that of a Barabasi-Albert graph with the same aver-
age activity, prevalence (we tuned A to achieve this) and
same size N. On all Aland networks (PL and EXP) the
average activity of nodes with degree k increases with k
sublinearly, until saturation takes place, (pr) = (p). Mean-
while the BA-case exhibits again the well-known scaling,
which is close to linear according to the MF-solution [15].

While otherwise the epidemics is strongly mean-field
like, one should however note that there are both inter-
esting fluctuations and correlations. The time series of
the spatially averaged population size, related to p(t),
exhibits large fluctuations even when A is not too close
to the extinction threshold A., as shown in Figure 11
for an average activity (p) = 0.056. The fluctuations are
significantly larger than one would expect for an uncor-
related process, Apuncorr =~ /{(p)/N =~ 0.004. The larger
fluctuations are caused by strong correlation within highly
linked subnetworks which get colonized or go extinct all at
once. These turned out to be quite important in the eco-
logical description of the population dynamics to ensure
conservation of the species Melitaeca cinzia and were clas-
sified as semi-independent networks (SIN) [18]. The sys-
tem is relatively robust against removal of single nodes,
as long as the highly linked subnetworks remain function-
ing. We have checked this in several ways, e.g., by deleting
highly linked nodes from the graph. A qualitative inter-
pretation is that within the subnetworks there remains
always a “way around” the removed nodes — unless too
much habitat has been taken out.

The influence of subgraphs becomes visible also in the
temporal autocorrelation of the activity, which is repre-
sented in Figure 12 for the average activity as well as for
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Fig. 11. A time series of the average activity (p) in an graph
with parameters EXP exhibits large fluctuations for A = 0.2,
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Fig. 12. Temporal autocorrelation of the spatially averaged
activity and at randomly chosen patches with intermediate link
degree (k=30). For detailed definition of 7, see text.

randomly chosen nodes. Here the autocorrelation of the
average activity p in the system over a time lag of [ steps
is defined

m = {p)p(t+1)) — (p(t)) (p(t+1)). 3)

Autocorrelations of single nodes (here an example of a
node ¢ with coordination number k=30 is taken) are de-
fined analogously, but with p;(¢) instead of p(t). The au-
tocorrelation times in the Aland networks (PA and EXP)
turn out to be quite short, which indicates a relatively fast
equilibration within highly linked subclusters [23]. The av-
eraged n-plots show again a definite difference between the
BA-model and both Aland cases. In particular the PL set
exhibits slowly decaying correlations. Notice that the av-
erage connectivity is much smaller than for the EXP one,
and close to the one of the BA graphs. It would be inter-
esting to try to locate such correlations to any particular
subgraph.

Likewise, one can consider the relation of (p;) vs. 4;.
For large spreading rates (e.g., A = 1.5) essentially all
nodes are active with probability A/(1+X) = 0.6. As A
decreases, clusters of lower activity, e.g. with (p;) ~0.12
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Fig. 13. Scatterplot of the average activity of each node versus
its patch size for various spreading rates A in a network for
parameter set PL. For large A = 1.5 virtually all plots have
the same (average) activity, for small A=0.1 most patches are
empty. Subgraphs with lower average activity are visible, in
particular at intermediate values of A.

at A =0.45 become visible, which correspond to medium
sized and effectively isolated subgraphs. They also have a
higher critical spreading rate A\$'P&"Ph helow which they
lose their populations. At low A = 0.1 most parts of the
network have become empty and many points in the plot
are found at the axis (p;) =0, in particular the four largest
patches which have remained populated at average popu-
lation density for higher values of A.

5 Conclusions

The behavior of populations in metapopulation land-
scapes provides an interesting example of a system that
can be discussed in the form of dynamical models on
graphs. These have properties quite unlike those of ideal-
ized models: there are correlations that carry over from the
underlying geography, and the connectivity is very high.
In the simulations of the SIS model on such graphs one dis-
covers that the main relevant feature is the very large av-
erage degree (k). Consequently the effective critical value
of the SIS spreading parameter A is small. Likewise, for
reasonable parameters the graph is essentially broken into
several independent subgraphs, or semi-independent net-
works in the ecologists’ terms.

From a biological viewpoint an attempt to map
metapopulation dynamics into the contact process on a
quenched graph is a strong simplification. It is of course
more intuitive to principally allow for migration between
any pair of patches j and k and to give the links some real
connection numbers 0 < ¢;; <1 which, e.g., could be cho-
sen proportional to the fj in equation (1). Empty patches
become colonized by sufficiently large number of immi-
grants, which in such a model can be supplied from several
different patches, whereas our simplified graph model con-
siders only colonization from one patch to another. This

A=0.80

Fig. 14. Same data as Figure 13, but represented in geograph-
ical space. Fat black dots: patches are alive ((p;) > 0.01) or
practically extinct (fat grey dots, {p;) <0.01.)

kind of construction is at the heart of the incidence func-
tion model [10]. Multi-patch immigration is however con-
tained here intrinsically, by a higher colonization rate in
higher linked patches, which rarely find themselves with-
out any populated neighbour.

Despite its simplicity the model reproduces several fea-
tures observed in the real population and by some more
realistic models: The cooperative population of many
patches, the tendency to have independent subpopulations
on highly linked subnetworks which become active or inac-
tive at once in a correlated manner. This enhances the ef-
fect of demographic stochasticity by reducing the effective
metapopulation size. The population consists of larger,
but less units. Fluctuations may drive the population to
extinction even if the spreading rate X is somewhat larger
than the critical A¢, which has been observed on quite a
few of the subnetworks in Aland over the last years [17]:
Melitaea has gone extinct on some subnetworks after a se-
ries of three quite dry summers unfavourable for its host
plants. In this respect it is interesting to note the slightly
non-Markovian dynamics of the order parameter (Fig. 11).
This is dependent on the particular choice of an incidence
function, which results in the degree distribution and cor-
relations exhibited by the final graph, and highlights the
crucial role of the (empirical) parameters therein.

The autocorrelation time is more than one order of
magnitude larger than the timescales involved in the el-
ementary processes of colonization and extinction, and it
is larger than on a BA-graph. Here the lifetimes of entire
highly linked subgraphs of SINs become visible covering
the traces of single patch dynamics. Note that the autocor-
relation of single patches in a subnetwork which remains
active during the measurement (lines without symbols in
Fig. 12) decays faster. We conclude that these subgraphs
of SINs are the important units for species’ conservation
issues.
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For future investigations one can envision several direc-
tions. Among others, metapopulation dynamics gives rise
to examples of interaction graphs that are rather unique,
and are reflected in the dynamical properties of models on
such graphs. An example met above is existence of cor-
relations in p(t) unlike in the reference model used (BA
graphs). Obviously, the survival properties of finite sys-
tems become interesting in this limit.
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